This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/dijkstra.hpp"
#ifndef __GRAPH__DIJKSTRA
#define __GRAPH__DIJKSTRA
// @title Dijkstra
#include "template.hpp"
#include <algorithm>
#include <functional>
#include <limits>
#include <queue>
#include <utility>
#include <vector>
template < typename T >
struct Dijkstra {
using P = std::pair<T, int>; // <始点からの距離, 点のid>
const T INF; // 十分に大きいがoverflowしない値として、型Tの最大値の半分を使う
const int V; // 頂点数
Graph<T> g;
std::vector<T> dist; // 始点からの距離
std::vector<bool> visit; // すでに探索済みの点か
std::vector<int> prev; // 移動経路
Dijkstra(Graph<T> &g): INF(std::numeric_limits<T>::max()/2), V(g.size()), g(g), dist(V), visit(V), prev(V) {}
Dijkstra(Graph<T> &g, int V): INF(std::numeric_limits<T>::max()/2), V(V), g(g), dist(V), visit(V), prev(V) {}
void init(int s) {
std::fill(dist.begin(), dist.end(), INF);
std::fill(visit.begin(), visit.end(), false);
std::fill(prev.begin(), prev.end(), -1);
dist[s] = T(); // 始点の距離を0で初期化
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.push({dist[s], s});
while (!pq.empty()) {
P node = pq.top(); pq.pop();
int from = node.second;
if (visit[from]) continue;
visit[from] = true;
for (auto &e : g[from]) {
if (visit[e.to]) continue;
T d = node.first + e.cost;
if (d >= dist[e.to]) continue;
dist[e.to] = d;
prev[e.to] = from;
pq.push({d, e.to});
}
}
}
// 移動経路を取得
std::vector<int> get_path(int t) {
std::vector<int> path;
for(; t != -1;t=prev[t]){
path.push_back(t);
}
reverse(path.begin(), path.end());
return path;
}
};
#endif // __GRAPH__DIJKSTRA
#line 1 "graph/dijkstra.hpp"
// @title Dijkstra
#line 1 "graph/template.hpp"
#include <iostream>
#include <vector>
template< typename T >
struct Edge {
int from, to;
T cost;
Edge() {}
Edge(int f, int t) : from(f), to(t), cost(1) {}
Edge(int f, int t, T c) : from(f), to(t), cost(c) {}
friend bool operator < (const Edge& lhs, const Edge& rhs) { return lhs.cost < rhs.cost; };
friend bool operator > (const Edge& lhs, const Edge& rhs) { return rhs < lhs; };
friend bool operator <= (const Edge& lhs, const Edge& rhs) { return !(lhs > rhs); };
friend bool operator >= (const Edge& lhs, const Edge& rhs) { return !(lhs < rhs); };
};
template< typename T >
using Edges = std::vector< Edge< T > >;
template< typename T >
using Graph = std::vector< Edges< T > >;
template< typename T >
void debug(Graph<T> &g, int n = -1) {
if (n == -1) n = g.size();
for (int i = 0; i < n; ++i) {
std::cerr << i << "\t";
for (auto &e: g[i]) {
std::cerr << e.to << ",";
}
std::cerr << std::endl;
}
}
#line 5 "graph/dijkstra.hpp"
#include <algorithm>
#include <functional>
#include <limits>
#include <queue>
#include <utility>
#line 12 "graph/dijkstra.hpp"
template < typename T >
struct Dijkstra {
using P = std::pair<T, int>; // <始点からの距離, 点のid>
const T INF; // 十分に大きいがoverflowしない値として、型Tの最大値の半分を使う
const int V; // 頂点数
Graph<T> g;
std::vector<T> dist; // 始点からの距離
std::vector<bool> visit; // すでに探索済みの点か
std::vector<int> prev; // 移動経路
Dijkstra(Graph<T> &g): INF(std::numeric_limits<T>::max()/2), V(g.size()), g(g), dist(V), visit(V), prev(V) {}
Dijkstra(Graph<T> &g, int V): INF(std::numeric_limits<T>::max()/2), V(V), g(g), dist(V), visit(V), prev(V) {}
void init(int s) {
std::fill(dist.begin(), dist.end(), INF);
std::fill(visit.begin(), visit.end(), false);
std::fill(prev.begin(), prev.end(), -1);
dist[s] = T(); // 始点の距離を0で初期化
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.push({dist[s], s});
while (!pq.empty()) {
P node = pq.top(); pq.pop();
int from = node.second;
if (visit[from]) continue;
visit[from] = true;
for (auto &e : g[from]) {
if (visit[e.to]) continue;
T d = node.first + e.cost;
if (d >= dist[e.to]) continue;
dist[e.to] = d;
prev[e.to] = from;
pq.push({d, e.to});
}
}
}
// 移動経路を取得
std::vector<int> get_path(int t) {
std::vector<int> path;
for(; t != -1;t=prev[t]){
path.push_back(t);
}
reverse(path.begin(), path.end());
return path;
}
};